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ABSTRACT
Attention mechanisms are commonly incorporated in models for
their ability to increase performance and to provide a distribution
over the inputs. The natural temptation is to assume these distribu-
tions serve as an ’explanation’ of the model’s decision, particularly
when viewed with visualization methods such as heatmaps. In ‘At-
tention is Not Explanation’, [Jain andWallace 2019] assert the claim
made in the paper’s title by empirically studying a bidirectional
LSTM model with a simple attention mechanism. They offer two
reasons for their claim: that attention weights do not correlate with
measures of feature importance; and that attention distributions can
be manipulated to produce different predictions. In this paper, we
replicate their results and dispute their first claim by showing that
sparse attention distributions strongly correlate with feature impor-
tance measures for the top-k features. We conclude by examining
attentionmechanisms in the context of explanation and recommend
using other tools when making claims of interpretability.
ACM Reference Format:
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1 INTRODUCTION
Interpretability of neural networks as a research topic has gained
considerable traction in recent years. [Fan et al. 2020] report an
exponential increase in publications, with almost 50 publications in
2016 and over 200 in 2018. This topic is falls under the more general
Transparency in AI research. Transparency concerns itself with
researching how we can explain why models gave the output that
they did. Attention mechanisms are frequently used to obtain such
explanations, specifically through visualisation. But the validity of
applying attention for this purpose, had not seen much research
until recently. ‘Attention is not explanation’[Jain and Wallace 2019]
claims that using attention in this way is not valid.

We summarise the findings of work done after that of Jain and
Wallace; study what parts of their work have come under the most
scrutiny; and contribute some scrutiny of our own by showing that
sparse attention could play a role in suppressing the noise that
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led Jain and Wallace to believe attention should not be used as
explanation at all.

2 JAIN ANDWALLACE’S METHOD
‘Attention is not Explanation’ aims to answer two main questions:
1) “Do learned attention weights agree with alternative, natural
measures of feature importance? and 2) Hadwe attended to different
features, would the prediction have been different?”

Both questions are answered empirically. The first type of ex-
periment (described in 2.1) aims to clarify whether or not attention
agrees with alternative measures of feature importance. The second
type of experiment (described in 2.2) intends to find different (coun-
terfactual) attention weights that still obtain the same prediction.
Jain and Wallace argue that these adversarial attention weights
provide an equally valid explanation, and thus that the originally
found set of weights are not as valuable as an explanation.

The experiments are performed on three tasks: binary text clas-
sification, question answering, and natural language inference.

2.1 Correlation with feature importance
measures

Correlation is calculatedwith twomeasures of feature importance: a
gradient-based method and the feature erasure (or 1leave-one-out’)
method. These measures are given by the following formulae:
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Where ŷ indicate predictions and ®x are the inputs, with ®x−t as the
inputs with the t-th element removed.

Kendall-τ correlation is then calculated between these measures
and the attention weights.

2.2 Counterfactual attention weights
Jain and Wallace propose two methods of creating counterfactual
attention weights. The first is to scramble the original attention
weights. The other method is to explicitly generate so-called adver-
sarial attention weights. These weighs are as different as possible
from the original while still generating the same prediction. We
will omit the formulae and algorithms here, since for reasons out-
lined in Section 3 and 4 our contributions do not involve this line
of experimentation. In both cases, the attention weights are only
altered after the model has been trained.
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3 RESPONSE AND RELATEDWORK
‘Attention is not not Explanation’ [Wiegreffe and Pinter 2019] is
a direct response to Jain and Wallace which challenges multiple
aspects of their paper. The main challenge is against the method
of obtaining adversarial examples. They argue that “detaching the
attention scores obtained by parts of the model ... degrades the
model itself. The base attention weights are not assigned arbitrarily
by the model, but rather computed by an integral component whose
parameters were trained alongside the rest of the layers; the way
theywork depends on each other.” To remedy this flaw, they propose
an alternative way of obtaining adversarial examples. Given a base
model, they train a separate model “whose explicit goal is to provide
similar prediction scores for each instance, while distancing its
attention distributions from [the base model]”. They show that
with this setup, it is still possible to find adversarial distributions,
but that they are much less extreme than those found by Jain and
Wallace.

Wiegreffe and Pinter also challenge the validity using some of
the datasets to study attention. They compare the performance of
the model to that obtained when using uniform attention weights
instead of the learned ones. They find that for two of the datasets
this does not influence performance. They argue this makes the
observed lack of correlation irrelevant, since the weights of an
unused attention mechanism have no derivable meaning.

Finally, they compare the adversarial weights with those found
by training the LSTM in a setup where the weights are imposed
on a simple MLP model. They also include the comparison of uni-
form weights with those obtained by training the MLP model. This
allows for a clean comparison in a setup where, because of the
model simplicity, the attention mechanism is more important. If the
adversarial weights are truly equivalent explanations, they should
yield similar performance in this setup as well. However, Wiegreffe
and Pinter do not observe this pattern. Instead, they find that impos-
ing adversarial weights decreases model performance considerably
compared to the weights learned from training the LSTM.

‘Is Attention Interpretable?’ [Serrano and Smith 2019] contains
an experiment similar to the one detailed in 2.1. But, instead of
comparing attention mechanisms with feature importance, it com-
pares them to the relative importance of the inputs to the attention
layer itself. They find similar results, expressing their concern that
“attention weights are only noisy predictors of even intermediate
components’ importance”. We believe that this work suffers from
the same problem pointed out by Wiegreffe and Pinter, because it
also alters the attention weights post hoc.

‘Learning to Deceive with Attention-Based Explanations’ [Pruthi
et al. 2019] develops a method of obtaining adversarial examples
similar to that given by Wiegreffe and Pinter, using similar motiva-
tion as to why this is necessary Although they say that their results
are concordant with Wiegreffe and Pinter, their conclusion has a
completely different emphasis. Where Wiegreffe and Pinter men-
tion: “We’ve shown that [adversarial distributions] perform poorly
relative to traditional attention mechanisms when used in our di-
agnostic MLP model. These results indicate that trained attention
mechanisms in RNNs on our datasets do in fact learn something
meaningful ... which cannot be easily ‘hacked’ adversarially”. Pruthi

et al. instead say: “Amidst claims and practices that perceive atten-
tion scores to be an indication of what the model focuses on, we
provide evidence that attention scores are easily manipulable”.

‘Attention interpretability across NLP tasks’ [Vashishth et al.
2019] contains a series of experiments similar to those by Serrano
and Smith. Besides setting a weight to zero and re-normalising,
they also perturb the attention weights. These experiments are per-
formed on more than just the single sequence tasks (e.g. sequence
classification), they include pair sequence tasks (e.g. question an-
swering), and generation tasks (e.g. machine translation) as well.
We believe that because the perturbation happens post hoc, this
too is sensitive to the same criticisms put forward by Wiegreffe and
Pinter against Jain and Wallace.

[Vashishth et al. 2019] also experiment with setting the attention
weights to be uniform and random. In this way, they partially repro-
duce the work by Wiegreffe and Pinter that labels some datasets as
unusable because they do not actually use the attention mechanism.
In contrast to the perturbation, these alterations do not happen
entirely post hoc because they also report performance after letting
the model retrain with the new attention weights. These exper-
iments show that the tested pair sequence and generation tasks
more heavily rely on their respective attention mechanisms than
the single sequence tasks. Furthermore, they put forward a more
fundamental argument, proposing that the attention mechanisms
employed in single sequence tasks can be reduced to simple gating
mechanisms. They consider the experimental results mentioned
above as evidence in support of this proposition.

‘AutoFocus: Interpreting Attention-based Neural Networks by
Code Perturbation’ [Bui et al. 2019] includes an experiment similar
to the one described in 2.1. The task they perform it on is multi-
class algorithm classification. In the experiment, parts of the code
(statements) are removed and the effect of this on the predication
is measured, similar to the leave-one-out method. This measure
of importance is compared to the attention weights given by the
model. They report a correlation mean of 0.65 with variance 0.26,
which they consider “a strong correlation”.

A different line of research into attention and transparency in-
vestigates the attention heads in multi-head attention mechanisms.
Rather than looking for correlation with feature importance, they
look for attention heads that seem to be performing specific NLP
tasks. [Vig and Belinkov 2019] do this for the small pretrained
GPT-2 model. They find that some attention heads focus on specific
part-of-speech tags; and that others focus on dependency relations.
Other work [Baan et al. 2019] analyses a model trained for ab-
stractive summarisation. They observe similar things like attention
heads focusing on part-of-speech tags and named-entities. But they
also note that they can prune over half of the heads before seeing
a significant difference in performance. The latter indicates that
using heads for explanations should be done with caution, because
it is unclear how important any particular head really is to the
model.

4 CONTRIBUTIONS
Of the two experiments performed by Jain and Wallace, we be-
lieve that the one described in 2.2 has seen sufficient scrutiny from
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Wiegreffe and Pinter. Therefore, we elect to focus our contribution
on the first experiment described in 2.1.

4.1 Reproduction
We replicate the results Jain and Wallace display in the original
paper using their provided code 1. Since their experiments were
already replicated by Wiegreffe and Pinter and for reasons outlined
in Section 9.1, we independently reproduce their results with a new
code-base. This allows us to examine Jain and Wallace’s implemen-
tation in detail and demonstrate sufficient understanding of their
work.

4.2 Correlation of top-k only
During the discussion of their results [Jain and Wallace 2019] note:
“We ... acknowledge that irrelevant features may be contributing
noise to the Kendall-τ measure, thus depressing this metric artifi-
cially”. They do also argue that because the attention weights from
the simpler ‘averaging’ model correlate much better with the other
measures, noise is likely not the problem. But they go on to say: “...
it remains a possibility that agreement is strong between attention
weights and feature importance scores for the top-k features only
(the trouble would be defining this k and then measuring correla-
tion between non-identical sets).” This particular possibility has not
been investigated by any of the work that has come out since [Jain
andWallace 2019]. In fact [Wiegreffe and Pinter 2019] mention “We
find the experiments in this part of the paper convincing and do
not focus our analysis here” in reference to the correlation experi-
ment. But we do choose to investigate this. We believe attention
mechanisms often assign most of the weight to just a few of the
hidden states. This is also our experience with most visualisations
of attention mechanisms. So if the top-k of weights are consistent
with other measures, attention might still provide some reliable
explanation.

5 EXPERIMENTAL SETUP
LikeWiegreffe and Pinter, we focus on the binary sentiment classifi-
cation task with a biLSTM seq2seq encoder and linear feedforward
decoder. To compare our results with the work of Jain and Wallace,
we restrict our choice of datasets to the ones used for the classifica-
tion task, namely: Stanford Sentiment Treebank (SST) and IMDB.
Wiegreffe and Pinter show the ‘20News’ and ‘AG News’ are not
suitable when investigating attention, and we were unable to gain
access to the MIMIC dataset. We use the same model parameters:
a 128-dimensional encoder hidden state, a 300-dimensional em-
bedding layer with pretrained FastText embeddings [Bojanowski
et al. 2016], and the AMSGrad [Reddi et al. 2019] variant of the
Adam [Kingma and Ba 2014] optimizer with the default PyTorch
learning rate of 0.001 and ℓ2 regularization (λ = 10−5). We con-
duct an experiment for each combination of attention type (tanh
[Bahdanau et al. 2014] or scaled dot product [Vaswani et al. 2017]),
attention activation function (softmax or sparsemax) and dataset
(SST or IMDB) for a total of eight experiments. We generate as
outputs the same correlation graphs and correlation .csv files as
Jain and Wallace, which display the mean, standard deviation, and
significant fraction (p-value < 0.05) for each correlation by class.
1https://github.com/successar/AttentionExplanation/

Gradient τд Leave-One-Out τloo
Dataset Class Mean ± Std. Sig. Frac. Mean ± Std. Sig Frac.
SST 0 0.280 ± 0.221 0.240 0.214 ± 0.218 0.171

1 0.186 ± 0.262 0.240 0.174 ± 0.271 0.171
IMDB 0 0.235 ± 0.179 0.736 0.166 ± 0.144 0.646

1 0.319 ± 0.167 0.736 0.251 ± 0.149 0.646
Table 1: reproduction mention bilstm

We conduct each experiment by training a separate model for 40
epochs. Training is terminated early if the area under the ROC
curve for the validation set does not continue to improve after ten
epochs. We use identical training, validation, and test splits on the
datasets to those used by Jain and Wallace.

5.1 Correlation of top-k only
To solve the problem of determining an appropriate k , we propose
to use sparse attention [Martins and Astudillo 2016]. We then set k
equal to the amount of non-zero values in the attention weights.
This avoids the problem of having to find an arbitrary value of k
that works well.

The problem ofmeasuring correlation between non-identical sets
was, to our surprise, already solved by [Jain andWallace 2019]. Their
code-base contained an implementation of the top-k generalisation
of Kendall-τ given in ‘Comparing Top k Lists’ by [Fagin et al. 2003].

6 RESULTS
6.1 Reproduction
Our results for reproducing the experiment described in 2.1 can be
seen in Table 1. Our numbers show slightly lower mean correlation
and slightly greater variance.

6.2 Correlation of top-k only
In Table 2 we can see the mean correlations and the corresponding
standard deviations. Figure 1 shows a near identical correlation
between the top-ks of the attention weights and the two feature
importance measures. This image shows the correlations for the
tanh attention mechanism, when k is equal to the number of non-
zero entries in the. Unfortunately the results were less impressive
for the sdp attention mechanism. In Figure 2 we can see that for
the ‘IMDB’ dataset there is still some correlation, but for the ‘SST’
dataset there is none at all.

7 DISCUSSION
Our results confirm that when we look at a top-k only, attention
can correlate just as strongly with feature importance measures
as they do with each other. This is an important footnote to Jain
and Wallace’s main conclusion: attention might not be as precise
as other metrics, but in some the circumstances we have tested,
attention does seem to provide a noisy explanation. This is impor-
tant especially in regard to visualisations of attention, as we believe
most people do not judge those as if they were a complete ranking
of all words in a sentence, but rather as a way to quickly look at
which k words were most important to the model and to a lesser
extent in what order.

Experiments in literature using attention as explanation have
varied results. At the moment of writing the most that can really

https://github.com/successar/AttentionExplanation/
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Gradient (BiLSTM) τд Leave-One-Out (BiLSTM) τloo
tanh sdp tanh sdp

Dataset k α Class Mean ± Std. Mean ± Std. Mean ± Std. Mean ± Std.
SST avg. 1 (soft) 0 0.365 ± 0.235 0.395 ± 0.261 0.316 ± 0.246 0.446 ± 0.249

1 (soft) 1 0.312 ± 0.293 0.131 ± 0.350 0.301 ± 0.300 0.103 ± 0.366
all 2 (sparse) 0 0.305 ± 0.228 0.258 ± 0.194 0.276 ± 0.234 0.176 ± 0.205

2 (sparse) 1 0.336 ± 0.207 0.020 ± 0.256 0.292 ± 0.219 0.003 ± 0.255
non-zero 2 (sparse) 0 0.824 ± 0.397 0.259 ± 0.195 0.818 ± 0.370 0.177 ± 0.207

2 (sparse) 1 0.784 ± 0.461 0.028 ± 0.271 0.822 ± 0.356 0.012 ± 0.271
IMDB avg. 1 (soft) 0 0.312 ± 0.169 0.166 ± 0.211 0.256 ± 0.162 0.122 ± 0.223

1 (soft) 1 0.415 ± 0.187 0.308 ± 0.192 0.369 ± 0.171 0.320 ± 0.180
all 2 (sparse) 0 0.248 ± 0.082 0.436 ± 0.102 0.217 ± 0.067 0.418 ± 0.113

2 (sparse) 1 0.226 ± 0.075 0.349 ± 0.201 0.211 ± 0.072 0.305 ± 0.188
non-zero 2 (sparse) 0 0.722 ± 0.525 0.651 ± 0.152 0.845 ± 0.346 0.621 ± 0.158

2 (sparse) 1 0.834 ± 0.454 0.480 ± 0.176 0.910 ± 0.315 0.436 ± 0.169
Table 2: contribution

Figure 1: Density plots (for IMDB and SST) of top-k generalisation of Kendall-τ between: attention and gradient-based; atten-
tion and feature erasure; and gradient-based and feature erasure. Correlations were obtained with biLSTM model with tanh
attention and with k equal to the amount of non-zero elements in the sparse attention weights.

Figure 2: Same graphs as in Figure 1, but with scaled dot product attention.
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be said is: attention might be explanation. Although no definitive
conclusions have been obtained by the research carried out so far,
we believe that there are some clear ways of moving forward. We
know that attention does not always provide explanation.Wiegreffe
and Pinter point out that the model must actually use the degrees
of freedom provided by the attention mechanism, if we are to be
able to actually explain anything with it. But there also seem to
be variables negatively affecting the applicability of attention as
explanation, without making it outright impossible. [Vashishth et al.
2019] find that the models trained for sequence-to-sequence tasks
rely much more on their attention mechanisms than the models
trained on classification.

From the literature it seems that the applicability of attention as
explanation is influenced by: the task, the dataset and the model
design. Future research should investigate this in more detail, and if
there are other variables influencing this. We think there might be
a correlation between: the extent to which an attention mechanism
for a given dataset and model design is used; and the attention
mechanism’s use in explaining what the model does. In a way this
is generalising whatWiegreffe and Pinter say; from a binary distinc-
tion between the attention mechanism being used or not used, to
a continuous phenomenon where the attention mechanism might
be used ‘partially’. A way to investigate if this generalisation holds
could be to plot the performance of the best adversarial examples
for a dataset/model over the drop in performance measured when
the attention mechanism is made defunct. If the best adversarial ex-
amples get worse as the drop in performance increases, this would
indicate that the more a model depends on its attention mechanism
(high performance drop) the harder it would be to find adversarial
examples (worse adversarial examples).

8 BROADER IMPLICATIONS
The importance measures used in [Jain and Wallace 2019] and
in this paper are relatively simple ones. A number of other more
sophisticated measures are available. Measures like LIME[Ribeiro
et al. 2016], Integrated Gradients[Sundararajan et al. 2017], and
SHAP[Lundberg and Lee 2017]. These measures could be included
in the comparison to attention, to provide a more elaborate idea of
how attention compares to feature importance metrics.

9 CONCLUSION
9.1 ACM Artifact Review and Badging
Jain and Wallace provide the source code for their experiments
as well as a web page for visualising their results 2. We judge
their artifacts to be consistent, complete, and exercisable as per the
ACM3 requirements on the ‘Artifacts Evaluated’ badge. However,
the process of running their code to reproduce the results is non-
trivial. The code is lacking in documentation and the logic is difficult
to follow, let alone extend. The user is required to run multiple
iPython notebooks and scripts to process the datasets and generate
the graphs and .csv files. We therefore award them the ‘Artifacts
Evaluated – Functional’ badge. To extend their experiments to the
more desirable ‘Artifacts Evaluated – Reusable’ badge, we leverage
the full features of the AllenNLP library, which was included in their
2https://successar.github.io/AttentionExplanation/docs/
3https://www.acm.org/publications/policies/artifact-review-badging

code only as a scaffolding system to pass parameters to the PyTorch
modules. Should anyone elect to reproduce or extend our codebase
in the future they can take use all the powerful features offered by
AllenNLP. Even with a limited knowledge of Python and PyTorch,
users can edit the Jsonnet files to change the experiments or add new
files to run different experiments. AllenNLP offers a multitude of
datasets, customisable neural language model implementations, and
features for visualising model behavior and results. We additionally
award Jain and Wallace the ‘Artifacts Available’ badge since their
paper, code, and results are publicly, permanently available online.
To quote Wallace’s reply to [Wiegreffe and Pinter 2019]: “It is nice
to see research progress quickly through open science”4.

We reproduced Jain and Wallace’s Kendall tau correlation re-
sults for the binary sentiment classification task using their original
code as well as our AllenNLP implementation for the IMDB and
SST datasets. Additionally, Wiegreffe and Pinter successfully repro-
duced near-identical Classification F1 scores for all datasets. For
these reasons, we award Jain and Wallace the higher-level ‘Results
Reproduced‘ badge, which requires that “the main results of the
paper have been independently obtained in a subsequent study
by a person or team other than the authors, without the use of
author-supplied artifacts”.

9.2 Attention in the context of explanation
In his examination of the ‘Mythos of Model Interpretability’ [Lipton
2016] highlights a common thread connecting efforts to ‘explain’
models: “the demand for interpretability arises when there is a
mismatch between the formal objectives of supervised learning (test
set predictive performance) and the real world costs in a deployment
setting”. Models are commonly trained with a relatively simple
objective: minimize the loss between prediction and ground truth.
We are often met with disappointment when we place demands
of fairness and transparency on models that were not encoded in
the architectural design or training process. There is a trade-off
between a model’s predictive power and its ability to meet human
expectations of behaviour justification or intuition. Agreement
exists between [Lipton 2016] and [Jain and Wallace 2019]. The
former recommends “caution against blindly embracing post hoc
notions of interpretability, especially when optimized to placate
subjective demands”, while the latter recommends “caution against
using attention weights to highlight input tokens ‘responsible for’
model outputs and constructing just-so stories on this basis”.

Attention mechanisms may not meet the strict interpretability
requirements we demand of neural models. Yet, when properly
framed, attention increases predictive power and seems to correlate
with measures of feature importance. As such it remains to be seen
if they provide honest visual justifications of their behaviour, or
whether this requires something more than what even state-of-the-
art feature importance metrics give us. Perhaps this is a lesson on
restricting tools to their intended purpose after all. A hammer is
great when you need to build a deck but it won’t help you make a
sandwich.

4https://medium.com/@byron.wallace/thoughts-on-attention-is-not-not-explanation-b7799c4c3b24

https://successar.github.io/AttentionExplanation/docs/
https://www.acm.org/publications/policies/artifact-review-badging
https://medium.com/@byron.wallace/thoughts-on-attention-is-not-not-explanation-b7799c4c3b24


FACT-AI, January 2020, Amsterdam, the Netherlands Michael J. Neely and Stefan F. Schouten

REFERENCES
Joris Baan, Maartje ter Hoeve, Marlies van der Wees, Anne Schuth, and Maarten de

Rijke. 2019. Understanding Multi-Head Attention in Abstractive Summarization.
arXiv:cs.CL/1911.03898

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. arXiv:cs.CL/1409.0473

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching
Word Vectors with Subword Information. arXiv:cs.CL/1607.04606

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. AutoFocus: Interpreting Attention-
based Neural Networks by Code Perturbation. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 38–41.

Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. 2003. Comparing top k
lists. SIAM Journal on discrete mathematics 17, 1 (2003), 134–160.

Fenglei Fan, Jinjun Xiong, and Ge Wang. 2020. On Interpretability of Artificial Neural
Networks. arXiv:cs.LG/2001.02522

Sarthak Jain and Byron C. Wallace. 2019. Attention is not Explanation.
arXiv:cs.CL/1902.10186

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arXiv:cs.LG/1412.6980

Zachary C. Lipton. 2016. The Mythos of Model Interpretability. arXiv:cs.LG/1606.03490
Scott Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model

Predictions. arXiv:cs.AI/1705.07874
André F. T. Martins and Ramón Fernandez Astudillo. 2016. From Softmax to Sparsemax:

A Sparse Model of Attention andMulti-Label Classification. arXiv:cs.CL/1602.02068
Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C.

Lipton. 2019. Learning to Deceive with Attention-Based Explanations.

arXiv:cs.CL/1909.07913
Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. 2019. On the Convergence of Adam

and Beyond. arXiv:cs.LG/1904.09237
Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I Trust

You?”. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’16 (2016). https://doi.org/10.1145/2939672.
2939778

Sofia Serrano and Noah A. Smith. 2019. Is Attention Interpretable? Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics (2019).
https://doi.org/10.18653/v1/p19-1282

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution for
Deep Networks. arXiv:cs.LG/1703.01365

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, and Manaal Faruqui. 2019.
Attention Interpretability Across NLP Tasks. arXiv:cs.CL/1909.11218

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need.
arXiv:cs.CL/1706.03762

Jesse Vig and Yonatan Belinkov. 2019. Analyzing the Structure of Attention in a
Transformer Language Model. Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP (2019). https://doi.org/10.
18653/v1/w19-4808

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not Explanation. Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
(2019). https://doi.org/10.18653/v1/d19-1002

http://arxiv.org/abs/cs.CL/1911.03898
http://arxiv.org/abs/cs.CL/1409.0473
http://arxiv.org/abs/cs.CL/1607.04606
http://arxiv.org/abs/cs.LG/2001.02522
http://arxiv.org/abs/cs.CL/1902.10186
http://arxiv.org/abs/cs.LG/1412.6980
http://arxiv.org/abs/cs.LG/1606.03490
http://arxiv.org/abs/cs.AI/1705.07874
http://arxiv.org/abs/cs.CL/1602.02068
http://arxiv.org/abs/cs.CL/1909.07913
http://arxiv.org/abs/cs.LG/1904.09237
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.18653/v1/p19-1282
http://arxiv.org/abs/cs.LG/1703.01365
http://arxiv.org/abs/cs.CL/1909.11218
http://arxiv.org/abs/cs.CL/1706.03762
https://doi.org/10.18653/v1/w19-4808
https://doi.org/10.18653/v1/w19-4808
https://doi.org/10.18653/v1/d19-1002

	Abstract
	1 Introduction
	2 Jain and Wallace's Method
	2.1 Correlation with feature importance measures
	2.2 Counterfactual attention weights

	3 Response and related work
	4 Contributions
	4.1 Reproduction
	4.2 Correlation of top-k only

	5 Experimental setup
	5.1 Correlation of top-k only

	6 Results
	6.1 Reproduction
	6.2 Correlation of top-k only

	7 Discussion
	8 Broader Implications
	9 Conclusion
	9.1 ACM Artifact Review and Badging
	9.2 Attention in the context of explanation

	References

